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demonstrated to be true or false but in their present forms are unsatis
factory. 

(3) The hypothesis of Fredenhagen, so far as it relates to anodic oxygen 
or an oxygen alloy as the immediate cause of passivity, is not to be recon
ciled with facts. 

(4) No explanation of the phenomena of passivity even approximately 
satisfactory has yet been produced. I have none to offer. Vet, when 
the experimental development warrants it, I confidently expect the cause 
of passivity to be found in an altered state of the metal itself, this altera
tion, whatever its character, being produced by any one of a number of 
different agencies. 

In conclusion, I wish gratefully to acknowledge my indebtedness to 
Prof. Max LeBlanc, of the University of Leipzig, in whose laboratory 
this research was carried out, for his constant helpful counsel and uniform 
kindness during the progress of the work. I am also grateful for the 
courtesies and help bestowed by Dr. Bcittger, Dr. Preundlich and Dr. 
Drucker, Privat-Dozenten in the University. 
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Many of the investigations of the past few years, on the velocity of 
reactions in gases, have been based upon the determination of the change 
in the composition of the gases while passing through heated tubes. The 
velocity coefficient has then usually been calculated by applying the for
mulas derived for reactions taking place in stationary gases. 

Bodenstein and Wolgast1 recently pointed out that this method of 
calculation is justifiable only when the gases pass through the tube en
tirely without mixing. For those cases where diffusion or convection has 
caused even partial mixing of the gases in the tube, they show that the 
usual method may lead to serious error. They develop formulas which 
hold when the mixing of the gases can be considered complete. 

We have then at our disposal, for the calculation of velocity coefficients, 
two formulas, one of which holds when there is no mixing and the other 
when there is complete mixing. The only means, however, for determin
ing which of the two formulas will give the most accurate results, in any 
series of experiments, is to calculate the coefficients by both formulas and 
then to choose that which gives the "better constant." That this method 

' Z. phys. Chem., 6i , 422-436 (1908). 
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is highly unsatisfactory became evident when Bodenstein and Wolgast 
applied their equations to the results obtained by Jellinek on the velocity 
of the reaction 2NO = N2 + O2. In one series of experiments the co
efficients obtained by the new formulas were only very slightly less con
stant than those obtained by the old; yet the difference between the con
stants given by the two methods was considerable. We can also see the 
difficulty in using this test if we consider that the degree of mixing may be 
different in each of the experiments. 

The object of the present paper is: 
i. To obtain criteria of practical value, for deciding, in any experiment, 

which, if either, of the above-mentioned formulas will yield accurate 
results. 

2. To determine, theoretically, the magnitude of the error arising from 
the application of the formulas to cases other than the limiting ones for 
which they were especially derived. 

3. To develop formulas from which to calculate the velocity coefficient 
in those cases where neither of the above-mentioned formulas holds good, 
but where, in the mixing of the gases, diffusion plays a more important 
part than convection. 

It will be the object of subsequent papers: 
i. To find a means of calculating the velocity coefficient when the walls 

of the tube, by acting catalytically, introduce a disturbing factor. 
2. To apply these theoretical results to Jellinek's1 work on the 

velocity of the reaction 2NO = N2 + O2; to Rowe's2 work on the 
velocity of combination of hydrogen and oxygen, and to the work of other 
investigators. 

General Theory of the Effect of Diffusion and Convection. 
Let us consider any reaction: 

W1A1 + W2A2 + n3K3 —> V A 1 ' + W2'A/ + etc. 
We assume that the reverse reaction takes place to a negligible degree 

only. In accordance with the nomenclature first proposed by van't 
Hoff let us represent the concentration of W1A1 (not A1!) by C1 thus 

C1 = [W1A1] or C1 = [A11/W1, 
C2 = [W2A2] or c2 = [A2]/w2, etc. 

Let us assume further that the reaction occurs without change of volume 
or that the volume changes only so slightly as to have a negligible effect. 
The necessity for this restriction is shown by Wegscheider,3 in a discussion 
of the influence of the changes of volume on the velocity of reactions. 
Applying the law of mass action we have: 

1 Z. anorg. Chem., 49, 229-276 (1906). 
2 Z. phys. Chem., 59, 41-71 (1907). 
3 Ibid., 35, 513-587 (1900). 
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For the sake of simplicity we will confine our attention at present to 
those cases in which the mixture undergoing the reaction contains equiva
lent concentrations of the various constituents A1, A2, A3, etc. This will 
not seriously restrict the usefulness of the resulting formulas. The con
centrations C1, C2, C3, etc., are then equal and remain equal to each other 
so that we may omit the subscripts. Equation (i) thus becomes 

dc 
(2) j - = — fee", where n — w, -4- M2 -J-- w3 -j- . . 
When the change of concentration in each element of volume is caused 

solely by the reaction taking place in that volume, as for instance, in sta
tionary homogeneous gas mixtures, we may integrate equation (2) directly, 
with the following results: 

(3) kst = log — for n = i. 

( 4 ) ksi~ n—'i (Cn«-"'"~o—J for n > i. 

ks is the velocity coefficient as calculated for stationary gases. 
a is the original concentration (at the time / = 0). 
c is the concentration at the time t, 

O 

In the case of moving gases we may apply equations (3) and (4), pro
vided we consider our element of volume to move along with the gas and 
provided there is no appreciable transfer of the reacting substances, either 
by diffusion or convection, through the bounding surfaces of the moving 
element of volume. The time /• must be taken to mean the time required 
for the gas to pass the length of the tube. It was the erroneous use of 
equations (3) and (4) to which Bodenstein and Wolgast called attention. 

When a gas mixture undergoing a reaction passes, with uniform velocity, 
so slowly through a vessel that diffusion and convection bring about a 
complete mixing of the constituents, then the concentration c becomes 
constant throughout the vessel and becomes independent of the time. 
In equation (2), dc/dt must then be taken to mean a partial derivative 
and in the integration we must consider kc" as constant; thus we get: 

(5) o - - C 0 = KC"J-
kM is the velocity coefficient as calculated for complete mixing. 
a is the concentration of the reacting substance in the gas entering the 

vessel. 
c is the concentration inside the vessel and in the gas leaving the vessel. 
t is the average time which a particle of gas remains in the vessel. If 

v is the volume of gas (in cc.) entering the vessel per second, measured 
at the temperature of the vessel, and V is the volume of the vessel (in 
cc.), then / = X /v. 
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Equation (5) is essentially the same as those of Bodenstein and WoI-
gast. We have, in equations (3) and (4) and in equation (5), the two 
limiting cases for no mixing and for complete mixing of the gases. When 
a and C0 are nearly equal, the two formulas become practically identical, 
but in other cases it becomes very important to decide which formula 
applies most accurately. 

The mixing of the gases is caused by convection currents and by diffu
sion. 

The convection currents are produced by the inertia of the stream of 
gas as it enters the vessel. In such experiments as we shall consider, 
currents set up by differences of temperature are probably never of im
portance. The amount of mixing caused by convection will in general 
be approximately proportional to the density (inertia) of the gas and 
inversely proportional to the coefficient of internal friction. The latter 
increases with increasing temperature, approximately with the 2/3 power 
of the absolute temperature, while the density is inversely proportional 
to the absolute temperature. The amount of mixing is therefore, roughly, 
inversely proportional to the 1.7 power of the absolute temperature. At 
I IOO 0 C. the mixing would be about 1/13 and at 16000 C. about 1/22 as 
great as at ordinary temperatures. 

On the other hand the coefficient of diffusion varies approximately with 
the square of the absolute temperature, so that at I IOO 0 it is about 22 
times and at 16000 about 41 times greater than at ordinary temperatures. 
It is therefore highly probable that, at very high temperatures, the effect 
of diffusion is much greater than that of convection. 

Of course convection can not well be considered mathematically and it 
will therefore remain a disturbing factor in all determinations of the 
velocity of reactions by the heated tube method. Care should be taken 
to design the apparatus so that convection may be avoided as much as 
possible. 

Derivation of Equations. 
Let us consider the problem of determining the effect of diffusion on 

the composition of a reacting gas mixture passing through a tube (Fig. 1.) 
of which the portion A-B is heated to a uniform temperature. We assume 
that this heated portion is 
sharply bounded at A and A. PP B 
B by thin porous plugs, in I B I / 
the pores of which the gases f B H S 
move with such high veloc- j II • 
ity that the quantity of the }. * * 1 J 
reacting substances carried f y+fy * 1 
past these points by diffu- * ^ 
sion is negligible compared 
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to tha t carried along by the movement of the gas. This condition is 
substantially realized in all experiments made with heated tubes or 
vessels, for the gas is made to enter and leave the vessel through capillary 
tubes, in which the velocity is so great as to render the effect of diffusion in 
these tubes entirely insignificant. 

We now assume tha t there is no mixing by convection; tha t is, we con
sider tha t all the parts of the gas move through the tube with the same 
uniform velocity, which we will designate by ,v. 

Let us now consider the changes of concentration of one of the reacting 
substances A, a t a cross-section P which moves along with the gas (with 
the velocity ,v). The total change in concentration dc is equal to the sum 
of the changes caused by time and motion respectively. 

Thus, 

dc = ^, dt -h ^ dy, 
dt oy 

but dy/dt = s, therefore dy = sdt; and dc/dt, the time rate of change of 
the concentration at any fixed cross-section of the tube, is zero, since a 
stationary condition is assumed to prevail. The equation thus reduces to 

. . . dc oc 
( 6 ) dt ^ S oy' 
In the element of volume bounded by P and P ' the number of mols 

of reacting substance (nA) which disappear by the reaction in the time 
dt is according to ( i ) : qdydtkc^'c,""- . . . . where q is the area of the cross-
section of the tube. 

Through the plane P, according to Pick's law, the following number of 
mols of nA enter the element of volume: 

•—Dg dt dc/dy. 
Here D is the diffusion coefficient of the gas A. Through the section 

P ' the following amount of M-A leaves the element of volume; 

- D , * ( £ + * * ) . 
The total increase in nA in the time dt is therefore: 

/ d2c 
qdy dt ( D 2 — kc^ C2"= . . 

Hence, 
dc ._ S2c , 

(7) ^ = D ^ 3 - k c ^ . . . 

Combining this with (6) we have: 

T->d2c dc 
(8) B ^ - s ^ - k ^ c , " * . . .=o. 
hD will be used to indicate the velocity coefficient calculated by con

sidering diffusion but by neglecting convection. 
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We get one such equation for each of the reacting substances A1, A2, A3, 
etc. In order to simplify matters we are now compelled to consider 
only those cases in which we have equivalent quantities of the reacting 
substances. The equation (8) now becomes: 

(9) D _ . _ J _ _ A D C « S = O . 

If there is only one reacting substance or if the different substances 
have diffusion coefficients nearly equal, the set of simultaneous equations 
reduces to a single one. In many cases these conditions are fulfilled; in 
others we shall have to remain content with an approximation obtained 
by calculating the results as though all the substances had the same 
diffusion coefficient D. 

Equation (9) can only be integrated, as it stands, when n = 1. When 
the order of the reaction is higher than the first, let us be content for the 
present with approximate results; we shall see, however, that these will be 
very close approximations if diffusion is sufficiently active to make the 
difference of the concentrations, between the ends A and B of the tube, 
relatively small. We may thus put c = co + x where C0 is the con
centration at the section B and x is a quantity small compared to C0 

in those cases where n > 1. 
With sufficient accuracy we may write: 

(10) C = (c0+ *)" = c0*->(co+ nx). 
Substituting this in (9) we obtain: 

(11) Bj? — s-~ — kc0"-l(c0+nx)=o. 

This is a linear differential equation with constant coefficients and can 
be solved in the usual way by substituting emy for co + nx. We then 
find for the complete solution: 

(12) C0+ nx = B ^ + B2e
m'v, 

where B1 and B2 are constants of integration and Vt1 and m2 are found 
from the following equation by taking the + and the — signs respectively 

(13) m = ^ 
2D 

In order to determine the constants B1 and B2 we must take into account 
the relation existing between the diffusion coefficient, concentration, and 
velocity of the moving gas and the quantity (Q) of reacting substance 
which passes any cross-section of the tube in a given time. This relation 
may easily be expressed in the form of the following equation: 

r \ dQ T-. dc 

At a cross-section through the tube near the porous plug B (y = L) the 
concentration is c0 and the amount of reacting substances passing this 
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cross-section is equal to tha t escaping from the tube through the porous 
plug B ; in other words dQ/dt = C0 qs. We thus find by consideration of 
(14) tha t for y = T, dcjdy = 0. But c = C0 4- x; hence from (12) follows: 

, dc dx B.w, , B,,w, 
(15) _ = - - = _J_ie»<iy -\ i—2e»<», 

oy dy n n 
By substituting dcjdy —• 0 and y = L in (15) we get one of the two 

equations needed to determine B1 and B 2 : 
(16) B1W1B*"11- + B2m2e

m2L = 0. 
The other equation may be obtained by substituting y = L in (12); 

x then becomes zero by equation (10), and we have: 

(17) co = Bje'"'1- + B2e'"2L. 

Solving the simultaneous equations (16) and (17) we find: 

B _ — Cn w, 

I B = ^ - ? m ' 
I 2 eOT2L w, — w : 

Our next step is to find the concentrations prevailing at the end A of the 
tube. At the porous plug A the concentration will be discontinuous, 
tha t is, there will be a finite difference of concentration between the two 
sides of the plug no mat ter how thin the plug may be. Let a be the con
centration of the reacting substances in the gas before passing the plug 
A, and ay the concentration just after passing it. On the side of the plug 
A facing B we have y = 0 and c = av or x = ai — C0. Substi tuting 
these values in (12) we get : 

(19) Wa1 — (n — i)c0 = B1 4- B2. 

Although c is a discontinuous function of y at the point A, this is not 
the case with dQ/dt, for none of the reacting substance disappears within 
the porous plug A. To the left of the plug, dQ/dt is equal to aqs, while to 
the right of the plug it is a^s — Dq dc/dy. Equat ing these two values 
and substituting for dc/dy its value obtained from (15) by put t ing y = 0, 
and by rearranging the terms, we find: 

(20) — -= (a — (Z1) = B 1 W1 4- B2W2. 

To simplify the application of the above formulas we will define three 
numbers,1 P, N and M, as follows: 

(2!) P = S -J ; N = " ^ ° ^ ; M = VP2 + 2 PN. 
2 D s 

Then from (13): 

(22) j 

1 P , N and M have each the dimensions zero 

W1L = P 4- M 
w,L = P — M 
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By substituting these in (18) and in turn substituting the new expres
sions for B1 and B2 in (19) and by rearranging the terms we can finally 
make the equation take the form: 

(23) Ma1 — (M — i)c„ = r---̂  (P sinh M + M cosh M).1 

Similarly, from (18), (20), (21), and (22) we obtain: 
, . , . C0N sinh M 
(24) n(a — O1) = — - ^ - . 
To find the concentration at points between the ends A and B, of the 

tube, we make these same substitutions in the equation (12). 
The result is: 

C c0 -\- nx = tic — (n — 1 )c0 = 
( 2 5 ) ( = M e P ^ , L ) [ p « n * M ( i - y / L ) + M coshM(i - y / I , ) . ] 

By adding (23) and (24) we obtain: 
c / N + P \ 

(26) na — (n — 1) c0 = -~ (cosh M H ~— sink M J. 
We shall now consider certain special cases for which equation (26) 

will take very simple forms. 
First Case, Mixing Nearly Complete.—Let us consider the case that 

P is small compared to 1, so that P2 can be neglected in comparison with 
i. Then M is also small and sink M can be expanded into a series of 
which we need take only the first two terms: 

sinh M = M + M3/6 and cosh M = 1 + M8/2. 
Substitute these in (26), then substitute for M its value in terms of P 

and N from (21). Expand the ep into a power series taking only the first 
three terms. Then divide the numerator of the second member of the 
equation by the denominator and neglect, in the result, terms containing 
P2. Rearrange the terms, substitute for N its value from (21) and put 
Iv = st, where t is the time during which the gas particles remain in the 
tube. In this way we obtain: 

(27) a — c o = f c D c 0 « * ( i + * N P ) . 
This equation holds approximately in all cases where ^NP is small (less 

than 0.1) even if n> 1 and a is large compared to C0. For as long as NP 
is small, at — cQ is also small compared to c0, as can readily be shown from 
equation (23); and therefore (10), upon which (27) is based holds good. 

By combining (5) with (27), remembering that ^NP is small compared 
to i, we get: 

(28) *D = * M ( i - i N P ) . 
A form sometimes more convenient can be obtained from (28) by sub-

1 Sinh M (hyperbolic sine of M) is equal to J eM — J e~M; cosh M = $eM + ie~M. 
(See J. W. Mellor's Higher Mathematics, Etc., for a table of the hyperbolic functions.) 
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stituting for N and P their values from (21). Then by considering that 
ku and kv differ from each other only slightly and that L = st, and by 
combining with (5) we get: 

Second Case, Only Slight Mixing.—We will now take the case where 
D/s is so small that there is only slight mixing of the gases in the tube. 
The concentration O1 therefore, will differ only little from a so that if a is 
large compared to C0 the equation (26) will not hold except when n = 1. 
Hence we can best treat the case before us by going back to the original 
differential equation (9). Since D is small we can, without serious error, 
substitute for d2c/dy2 an approximate value obtained as follows. Put 
D = 0 in (9); this gives us a sufficiently accurate value for dc/dy. By dif
ferentiation we get: 

d2c nknc"—' dc 
dy2 s dy' 

Substitute this in (9): 
„ . Dn&D dc , dc , , 
(30) - — - + s - = —kDdy. 
This equation holds between the porous plugs A and B, but since c is 

discontinuous at A, it does not apply at A itself. 
ks can be calculated from (30) by placing D = 0: 

s •• — — ksdy. 

Subtract this from (30): 
,, , s , DnkD dc 
{hB — ks)dy = -. 

^ c 
Since kD — ks is small we can substitute ks for kD in the second 

member, making an error of the second order only. We now integrate: 
for y between the limits 0 and L, and for c between the limits O1 and c0. 

(feD— &S)L = log —'. 
s c0 

O1 differs from a by a small quantity of the first order, but in determin
ing kD—ks we can replace, in the second member, O1 by a and cause an 
error of the second order only. The equation may now be written: 

(31) kD = kB(i + ^ * l og" - ) . 

When n = 1 or when a does not differ much from co equation (31) 
can be shown to be equivalent to: 

(32) K = &s(i + 2 p ) . 

This last result can also be obtained from (26) by methods somewhat 
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analogous to those used in the derivation of (27), making the assumption 
that D is small and neglecting terms of the second order. 

We see by a consideration of the equations (32), (28) and (21) that 1 /P is 
a measure of the amount of mixing caused by diffusion. 

When i /P is zero there is no mixing and equation (26) reduces to (3) or 
(4) or at least it does so when the assumption1 that was made in its deriva
tion, is fulfilled. 

When i /P increases without limit then there is complete mixing and equa
tion (26) becomes identical with (5). 

Conclusions and Summary.3 

In order that the formulas which have been derived, may be applied 
by those who have not cared to follow the rather long calculations 
that were necessary, the following pages will be devoted to a brief state
ment of the problem which I have attempted to solve and of the results 
obtained. 

We have considered the problem of determining the change of composi
tion which will occur in a reacting gas while it passes with uniform velocity 
through a heated tube. We have taken into account the effect of diffusion 
and convection on such change of composition. 

The heated portion of the tube is assumed to have a uniform tempera
ture and to be of the same cross-section throughout its length. The gases 
are supposed to enter and leave this heated portion so rapidly that no 
perceptible reaction takes place except in this sharply defined heated 
region. This may be done in practice by using capillary tubes. 

We consider only those cases where the walls of the tube do not act 
catalytically and where the reaction takes place without change of volume 
or where the change of density in passing through the tube is small—in 
any case, less than ten per cent. 

If the reaction is of an order higher than the first, that is, if n > 1 we as
sume: 

i. That the reacting substances are present in equivalent amounts. 
2. That the diffusion coefficients of the different reacting substances 

have the same magnitude. If this should not be the case, then those 
formulas given below which involve the diffusion coefficient D will not 
give accurate results; but in most cases by substituting in the formula first 
the value of the largest diffusion coefficient possessed by any of the sub
stances and then the value of the smallest coefficient, we can obtain 
two results between which the true result must lie. I t should be noted 
that the diffusion coefficients of gases do not differ very largely from 
each other. 

1 This assumption is that when » > i , O1 differs only little from c0. 
2 For the meaning of the symbols used see the list at the end of this paper. 
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In the following several paragraphs, are given the formulas of the most 
practical value. 

(3) kst = log - . This holds only forn = 1. 

(4) k$t = (—rrr, — „_ , ) • This holds for w > i. 
n — i Vc0" ' a" V 

These formulas hold accurately only when diffusion and convection 
do not cause any perceptible mixing of the gases in the tube. 

If it can be safely assumed that convection plays but a small part 
compared to diffusion—and from the considerations given in the early 
part of this paper (after equation 5) this does appear probable—then we 
may say with certainty that equations (3) and (4) hold accurately 

whenever the quantity --• log is negligibly small compared to 1. 
Sl1 C0 

If this quantity is not negligible but has a value less than 0.1, then 
the following equation gives a very close approximation to the true 
velocity coefficient: 

(3D feD = fes(i+^log^ 

When diffusion and convection are so active as to cause complete 
mixing of the gases in the tube, the velocity coefficient should be cal
culated from the following equation: 

(5) 0 — C0 = kMc0 H. 
In order to decide whether the mixing is complete or not, we have 

the following simple criterion. If the quantity ——• - —-° is negligible 

compared to 1, then it is certain that the mixing is so nearly com
plete that equation (5) will hold accurately. When this quantity is 
not negligible but has a value not exceeding 0.1 then the following is a 
close approximation for the velocity coefficient if convection plays but a 
small part compared to diffusion: 

If we are not able to assume that the effect of convection is negligible, 
we have, at least, the following to help us to determine the true velocity 
coefficient k: 

(33) K < k0 < k < kK. 
When convection is negligible k becomes identical with kD. On 

the other hand when convection is much more important than diffusion, 
k approaches kM. 

Equations (31) and (29) should never be applied except when the 
second terms in the parenthesis are numerically less than 0.1 or (for 
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very rough results) 0.2. In those cases where both these quanti t ies 
are larger than the numbers given, the coefficient kD may be calculated 
with almost any desired degree of accuracy, by a method of approxi
mation, from equation (26)1 provided t ha t when M > I the quant i ty 
(Z1 (calculated from equation 23) differs only by a relatively small amount 
from C0. The details of this calculation will be discussed later in a paper 
which will deal with the application of the formulas here derived. 

The numerical values of the diffusion coefficients of many pairs of 
gases are easily available, for example in Tandolt-Bornstein's Tables; 
in all cases, however, the diffusion coefficients may be calculated with 
sufficient accuracy from the coefficients of internal friction.2 The order 
of magnitude of all diffusion coefficients is about the same. In nearly 
all cases, except when one of the gases is hydrogen, the diffusion coeffi
cients have values a t o 0 C. which lie between 0.09 and 0.2 cm.2 per second. 
The diffusion coefficient increases rapidly with the temperature, nearly 
in proportion to the square of the absolute temperature. 

In conclusion, to give a clearer idea of the effect of diffusion on the 
composition of gases passing through heated tubes, I have calculated, 
as an example, a curve (Fig. 2) giv
ing the concentration of the react
ing substance in a hypothetical ex
periment as a function of the dis
tance from A, the end of the tube 
a t which the gas enters. 

The gas is assumed to enter the 
tube (of 10 cm. length) with the 
concentration a = 22.32 and to have -
the velocity s = 1 cm. per second g 
while in the tube. The reaction is z 
taken to be monomolecular and its S 
velocity coefficient equal to 0.1. 8 
Three cases are considered: 

i. Diffusion and convection play 
no par t ; this gives us the curve S, 
calculated from equation (3). 

2. Convection is absent, but dif
fusion occurs, the value of D being 
taken as equal to 5.0. Curve D is 
thus calculated from equations (25) 
and (24). F i S - 2 -

1 See under the heading Derivation of Equations. 
2 See O. E. Meyer, Die Kinetische Theorie der Gase, 2nd Ed., pp. 274. 
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3. Diffusion and convection cause complete mixing, thus making the 
concentration throughout the heated portion of the tube constant. Equa
tion (5) here gives us the curve M. 

It appears, clearly, from the curves that diffusion and convection 
tend to decrease a—- C0, that is, they act in a way equivalent to a decrease 
in the velocity of the reaction. 

List of Symbols and Their Meanings. 

The numbers in parentheses refer to equations in the text. 
a = concentration of the reacting substances in the gases before 

entering the heated portion of the tube. See c. 

O1 = concentration of the reacting substances immediately after 
entering the heated portion of the tube. Thus in Fig. 1, Ci1 is 
the concentration on the right-hand side of the porous plug A. 
See c. 

c = concentration of the reacting substance inside the heated portion 
of the tube, at any distance y from the porous plug A, Fig. 1. 
All concentrations are to be measured in mols. per unit of volume. 

C0 = concentration of the reacting substances in the gases leaving 
the heated portion of the tube. See c. 

k = true velocity coefficient of the reaction. Defined by (2) when 
this is applied to homogeneous gas mixtures. 

kD = velocity coefficient calculated from (26), (29), (31) or others. 
It may be different from k. 

feM = velocity coefficient calculated from (5); it may differ from k. 

ks = velocity coefficient calculated from (3) or (4); it may differ from k. 

L = length of heated portion of tube. 
M = a number defined by (21). 
N = a number defined by (21). 
n = order of the reaction. See (2). 
P = a number defined by (21); i /P is a measure of the amount of mix

ing caused by diffusion. 
.? = linear velocity of the gases while passing through the heated 

portion of the tube. 
t = time required for the gases to pass the length of the heated por

tion of the tube, t = ~L/s. 
y = distance measured to the right from the porous plug A1 Fig. 1. 
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